
Egosoft

Network Integration
Design Plan

For X4

Version 0.5D

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

Revision History
Date Version Description Author

05/02/08 0.5 Initial draft Stefan Hett

05/02/08 0.5D Adjusted version for the diploma thesis. Stefan Hett

Egosoft, 2007-2008 Page 1

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

Table of Contents
1 Introduction...3

1.1 Purpose...3
1.2 Scope..3
1.3 Definitions, Acronyms, and Abbreviations..3
1.4 References..4
1.5 Overview..4

2 Network Layer Design..5
2.1 XU Layer (Layer 3)...6
2.2 Network Base Layer (Layer 2)..6
2.3 Framework Layer (Layer 1)...6

3 Network Engine Integration..7
3.1 Iteration 1: Engine Refactoring..7
3.2 Iteration 2: Replication Support...11
3.3 Iteration 3: Introduction of Object Roles...12
3.4 Iteration 4: Setting receivers for objects..13
3.5 Iteration 5: Object Synchronization...13

Egosoft, 2007-2008 Page 2

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

1 Introduction

1.1 Purpose
The purpose of this document is to keep a record of the changes made to X4's game engine and to
summarize the integration of the network engine. It describes design decisions made and provides
the reasons which stand behind these decisions.

1.2 Scope
It's outside the scope of this document to describe all the code changes in too much detail. If you
need to know the detailed code implementation, refer to the commented sourcecode directly.

Furthermore this documentation will not cover any side-by-side changes made to the game engine
which is not directly associated with the integration of the network engine.

1.3 Definitions, Acronyms, and Abbreviations
Any new acronyms are covered in appendix A. Furthermore the “Network Integration –
Background document” (see chapter 1.4) provides more definitions, acronyms and abbreviations
used in this document.

Egosoft, 2007-2008 Page 3

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

1.4 References
Title Report Number Date Publisher

X4 – Networking Background Information Revision 1.4D 04/02/2008 Egosoft

doc\diplomathesis\X4 - Network Integration - Background 1.4D.pdf

X4 – Network Integration - SRS Revision 0.95D 04/02/2008 Egosoft

doc\diplomathesis\X4 - Network Integration - SRS 0.95D.doc

X4 – Network Integration - Analysis Revision 0.9D 04/02/2008 Egosoft

doc\diplomathesis\X4 - Network Integration - Analysis 0.9D.pdf

1.5 Overview
Chapter two provides a furrow overview of the network engine's layer structure, while chapter 3
describes all the stages of the network engine's integration process.

Egosoft, 2007-2008 Page 4

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

2 Network Layer Design
This section provides a summarized overview of the network engine's layer structure. It is essential
to understand this structure in order to be able to follow the implementation stages. A more detailed
explanation of the network engine's different layers can be found in chapter 2.5 of the “X4 –
Network Integration – Background” document. The design described there depicts also the state of
the network engine as it was right before implementing the first iteration (see chapter 3.1).

Egosoft, 2007-2008 Page 5

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

2.1 XU Layer (Layer 3)
The XU Layer contains all classes which can be considered part of the game engine and are directly
related to the network base layer (i.e. use objects of layer 2 classes or inherit from layer 2 classes).

There are some exceptions to this caused by the current layer separation procedure not being
completely implemented, yet. These exceptions are that classes derived from NetworkObject (a
layer 2 class) won't belong in this layer, but remain part of the game engine instead. This is due to a
missing NetworkObject interface class which will be added in the near future.

The same applies to classes relying on the Replicatable interface, which currently resides in layer 2
but is slated to be moved out of the network engine.

2.2 Network Base Layer (Layer 2)
This is the separation layer which ensures platform interdependency of the network engine. It
provides all the functionality which is needed by the XU Layer to provide the multiplayer capability
of X4.

By acting as an interim layer between the XU and the Framework Layer, this prevents the XU
Layer and any other part of the game engine from having to be adjusted, if the Framework Layer is
replaced.

2.3 Framework Layer (Layer 1)
The integration of the network framework is what this layer is used for. The Framework Layer
provides those functionality needed by the Network Base Layer to establish the communication to
remote hosts, receive data and provide basic networking features.

Egosoft, 2007-2008 Page 6

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

3 Network Engine Integration
This section covers each iteration of the network engine's integration process.

3.1 Iteration 1: Engine Refactoring
The initial tests left us with a somewhat clumsy integration of a rudimentary network engine
providing only some basic functionality. To clean things up without throwing everything away, the
current implementation will be refactored.

To clarify the communication paths between the network layers, network layer 2 (Network Base
Layer) and 3 (XU Layer) will be added three interfaces, each. These interfaces specify the methods
which are expected to be provided by the underlying layer.

The PeerInterface class (later renamed to HostInterface) defines those methods which are to be
implemented by both classes (server and client), while the server- and client interfaces specify
additional required methods.

Communication between layers is only possible using the methods declared in these interfaces. This
helps to reduce the impact on any higher layer, if we need to replace the network framework in use.

To disentangle the different layers even further, we need to revise the
inheritance model which suffers the following design flaw:

One of the intended requirements is that any change made to the
Framework Layer should at most result in necessary changes to the
Network Base Layer but explicitly not to the XU Layer. However, when
we construct a server- or client-object in the game engine, we need to
directly create a ZoidServer or ZoidClient object (which belong to layer
1), because of the current inheritance structure.

This violates the requirement discussed above.

Egosoft, 2007-2008 Page 7

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

What we'd like to do is creating a Layer-2-Server-object rather than a Layer-1-Server one. That way
we won't have to change the construction of this object in the game engine, even if we completely
replace the Framework Layer (due to renamed classes in that layer).

In order to achieve this we'll redesign the inheritance structure and only allow inheritances to go
downwards through the different layers rather than upwards. The following class diagram shows the
new design:

The first change will be to turn around the inheritance between the ZoidServer- and the Server-
class. This also leads to a changed order of calling virtual methods and moves the responsibility of
calling those from the Framework Layer to the Network Base Layer.

The old style was to call the Server's Init()-method in ZoidServer's Init()-method. Now it's exactly
the other way around (Server::Init() calls ZoidServer::Init()).

The last noteworthy change is that ZoidServer no longer inherits from Singleton. Instead Server will
inherit from the Singleton class. This allows us to call Server::GetInstance() from anywhere in our
game and always get the correct server class, even if we replace the Framework Layer (i.e.
ZoidServer with RakServer, for instance).

Corresponding changes will be made to the Client class inheritance structure.

Egosoft, 2007-2008 Page 8

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

To complete the refactoring of the network layers the usage of our own “datatype-classes” like the
Host-class will be changed, too. The old way of using these classes was to inherit from these. For
instance KickParameter inherited from Host:

Since this is not in accordance with the methodology of object oriented programming (i.e.
KickParameter is not a Host, as the inheritance would suspect), this willl be changed by replacing
the incorrect inheritances by storing the “datatype” as a member variable instead. In case of the
KickParameter class this would result in the following change:

Egosoft, 2007-2008 Page 9

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

Finally the direct dependency between layer 1 and layer 2 will be eliminated by removing the
inheritances between layer 1 and layer 2 datatype-classes.

Given the example above, ZoidKickParameter will be removed and the layer 1 method which used
it (i.e. ZoidServer::KickClient()) will be refactored to accept a KickParameter object instead.

That way a layer only needs to know two things about it's superior layer:

– the interfaces it needs to provide

– the definition of the datatypes used as parameters for some of the interface methods

This leads to Layer 1 no longer having to be aware of the HostList-system which belongs to Layer
2.

Additionally this enables us to get rid of the ServerList/ClientList classes as well as the ServerInfo/
ClientInfo ones, which are not needed in Layer 2 anymore.

The following figure shows the class structure as it looks like after the refactoring process:

Egosoft, 2007-2008 Page 10

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

3.2 Iteration 2: Replication Support
To get things started (i.e. the network engine to synchronize the universe), we'll have to add support
for object replication. This will allow us to inform hosts of newly created objects and is necessary
for the initial synchronization.

First thing to do (relating to the Network Integration Analysis) is to add a new BitStream class,
which will contain the parameters for the static factory method which is to be added to the
Component class and potentially other none-component classes. Since ZoidCom and RakNet
already provide BitStream classes, we don't need to implement the basic functionality again in layer
2. Instead we'll define a new interface which specifies the methods which need to be implemented
by any BitStream class. This interface class is then to be implemented by a wrapper-class in layer 1.

Furthermore we need a way to communicate the replication procedure between layer 1 and layer 2.

To accomplish this, we should inform layer 1 of all the objects which can be replicated. This is
necessary for those frameworks (like ZoidCom) which have their own replication system in place
and use their own generated class ids to identify the class which needs to be replicated. On layer 2
we use our own ids which potentially differ from those used in layer 1. Therefore we need layer 1 to
keep an association list between its class IDs and those we use in layer 2.

This will be done by adding the RegisterReplicationClass()-method to the Layer1Host interface.
This method will be called for each replicatable class and receives its class ID.
RegisterReplicationClass() will be called from within RegisterReplicationClasses(), another new
method, which resides in Layer2Host and will be called during the server/client initialization.

Since the implementation of these two methods are likely to be the same for server and client
classes, it is obvious that the implementation should only be done once. In layer 1 this will be done
in the ZoidBase class, in layer 2 a new NetworkBase class will be introduced and implement the
functionality there. However this requires a small change in our inheritance structure, since
ZoidBase and NetworkBase need to be inherited from LayerXHostInterface, which contains the
pure virtual declaration. To work around the diamond problem, which would be caused by the
changed inheritance, we use virtual inheritance wherever a class is derived from
Layer1HostInterface.

That concludes the necessary steps for registering replictable classes.

Though there are still two more things to do, to come up with a fully functional replication system:

In order to get a NetworkObject's class id, we add the GetClassID() method to the base class and
overwrite it in the derived classes to return a unique ID.

The problem with this generated ID is that it can only be assumed that the returned value is unique
for all those classes which are derived from the specialized network object class. It's not unique on a
global basis.

To ensure the uniqueness for all class ids, we add a prefix before the returned class id. This prefix is
unique for all classes directly derived from NetworkObject and is returned by the GetPrefix()
method which is expected to be implemented by all classes which derive from NetworkObject.

Egosoft, 2007-2008 Page 11

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

GetNetworkClassID() is being implemented in NetworkBase and provides easy access to the fully
classified id.

The second thing is to implement the factory method which will be called whenever a new object
needs to be replicated. This is a static method called ReplicateObject() which will be provided by
each class derived from NetworkObject and is called by the corresponding ReplicateObject()-
method in the layer 2 server or client class.

However, ReplicateObject() in the layer 2 classes rises another problem. It is expected to be called
by the layer 1 classes, when an object needs to be replicated. To allow the layer 1 class to call the
ReplicateObject() method, we declare it in Layer1HostInterface. The real implementation however
is done in the layer 2 NetworkBase-class while the call is initiated from the layer 1 ZoidBase-class.
The problem is that currently NetworkBase is not derived from ZoidBase. So calling
ReplicateObject() from within ZoidBase won't automatically be passed on to the NetworkBase
class.
Therefore we need to tweak the inheritance structure a bit further... NetworkBase will inherit
virtually from ZoidBase, as will ZoidClient and ZoidServer. For convenience we'll also inherit
NetworkBase virtually from Server and Client. The following diagram shows the updated class
diagram after iteration 2 is complete:

3.3 Iteration 3: Introduction of Object Roles
The Object Role system is implemented by means of two new member variables which are being
added to the NetworkObject-class. Since layer 1 must also be notified when the object's role
changes, a new interface class called “Layer1NetworkObjectInterface” is introduced. This interface
class defines the new callback-method OnRoleChanged() which is called by layer 2, whenever the
network object's role is altered.

Egosoft, 2007-2008 Page 12

Network Integration Version: 0.5D

Design Plan Date: 05/02/08

X4-NET-PLAN

3.4 Iteration 4: Setting receivers for objects
Not covered in the analysis document is a way which allows us to set the recipient for objects.
However such a functionality is necessary, if we want to have the control over which objects are
being sent to which clients.

The initial idea of adding it in the network base layer was rejected due to the fact that ZoidCom
already provides a more or less easy way to do it. Based on ZoidCom's ZoidLevels, an
implementation is quite easy.

The integration will consist of two new methods which are being added to the
Layer1NetworkObject interface:

bool AddRecepient(const Host& recepient);
bool RemoveRecepient(const Host& recepient);

3.5 Iteration 5: Object Synchronization
First thing to implement is the Replicator class. This class will allow us to implement the final
replication system.

Second thing to do is to add two new methods to the NetworkObject:

ReplicationSetup()
InitialReplicationSetup()

Both methods will populate a vector with replicators.

The vector populated by ReplicationSetup() is used to set up object synchronization as well as for
the savegame system.

InitialReplicationSetup() will fill up a vector, which is being used to create or reconstruct the
bitstream used for object replication. Note that this method has no effect on the savegame system.

Both methods will be called from within InitNetworkObject().

At first InitialReplicationSetup() is executed. If the object is constructed due to a replication request
from the server, the vector is used to deserialize the received bitstream.
If the object is constructed as an owner object, the replicators are used to create the announcement
datastream which is to be send along with any replication request.

Bare in mind that the announcement datastream is constant; that said, it will only be set during the
first call to InitNetworkObject() and can't be altered lateron.

After InitialReplicationSetup() has been called, ReplicationSetup() is being executed, the replication
setup passed along to layer 1 and the relevant replicators for the savegame system are being stored
in a member variable.

Egosoft, 2007-2008 Page 13

	1Introduction
	1.1Purpose
	1.2Scope
	1.3Definitions, Acronyms, and Abbreviations
	1.4References
	1.5Overview

	2Network Layer Design
	2.1XU Layer (Layer 3)
	2.2Network Base Layer (Layer 2)
	2.3Framework Layer (Layer 1)

	3Network Engine Integration
	3.1Iteration 1: Engine Refactoring
	3.2Iteration 2: Replication Support
	3.3Iteration 3: Introduction of Object Roles
	3.4Iteration 4: Setting receivers for objects
	3.5Iteration 5: Object Synchronization

